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Documented living plant collections distinguish botanic gardens from
other green spaces and horticultural landscapes. With more than 3,500
collections worldwide, these institutions steward at least 105,634 species—
around 30% of all land plant diversity—while fulfilling amenity, educational,
scientificand conservationroles. However, twenty-first-century challenges

demand are-evaluation of how these collections are documented and
managed. We argue that meeting these emerging needs requires higher
standards of coordinated information management and innovation in
datainfrastructures across the global network. This Perspective critically
examines data management practices of living collections supporting
scientific research and conservation, frominstitutional to global levels. We
identify the renewed demands on living collections, highlight exemplar
global datainfrastructures, define data challenges inherent to living
collections and explore how current systems fall shortin enabling a
connected global system. Finally, we outline a vision for high-performance
collections, fully integrated into a robust global data ecosystem.

Globally, there are more than 3,500 documented living plant collec-
tions, collectively stewarding a staggering minimum of 105,634 plant
species, encompassing 30% of all land plant species diversity’. The
living collections have long been an asset for vital and traditional
scientific disciplines such as taxonomy and systematics®. But a
revitalized scientific role for diverse living collections is also being
driven by new and evolving scientific disciplines®~ that depend on
access to well-provenanced and taxonomically verified material.
For example, genomics requires living material for the isolation of
high-molecular-weight DNA for long-read sequencing, for optical map-
ping techniques to enable chromosome-level assembly and to obtain
RNA for comprehensive genome annotation®. Dramatic reductionsin
genome sequencing costs have increased the ambition of sequencing
initiatives, with programmes such as the 1000 Plant Transcriptomes
project” and the Global Genome Initiative for Gardens that require ready
access to plant collections®. The revolutionary synthesis of metabo-
lomics and transcriptomics, facilitating the rapid characterization of
biosynthetic pathways and bio-industrial production of high-value
chemicals from plants, thrives with access to taxonomically diverse

collections. Living collections have the potential to support the biomi-
meticstudy of plant structures, processes and systems that can support
innovative technologies and solutions in engineering and design® 2.
Finally, plant biology has re-entered a progressively comparative era,
in which biological models and knowledge, derived from relatively
few laboratory-based organisms, are increasingly tested against an
expanding array of diverse species®.

Inaddition to renewed scientific demands for diverse living mate-
rial, the living collections held by botanic gardens are increasingly
viewed as a vital ex situ repository for biological and cultural plant
diversity", including species that are threatened with extinction in
native habitats” ™", and especially exceptional plant species that cannot
be conserved using conventional seed bank methods'®. More than
40% of the world’s plant diversity has been estimated to be at elevated
risk of extinction. The extinction threat is largely deemed anthropo-
genic, including habitat degradation, introduction of invasive species,
resource overexploitation and climate change'. The central role of
living collectionsinthe conservation and management of plant diver-
sity rests onthe assertion that no plant species should become extinct,
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Fig.1|Key data domains for aliving plant collection. This diagramillustrates
exemplar categories of data required to manage a living plant collection. At

the centreis asymbolic representation of abotanic garden, surrounded by

eight essential domains of data: accessioning, verification, status, enrichment,
exchange, utilization, germplasm and de-accessioning. Each domain encompasses
specific types of information vital for tracking plant material throughout its life

cycle—fromacquisition to eventual removal. These interconnected data categories
underpin the stewardship of living collections and collectively generate the data
needed to support a metacollection model for global living plant collections
management. ABS, Access and Benefit Sharing; CITES, Convention on International
Tradein Endangered Species of Wild Fauna and Flora; IPEN, International Plant
Exchange Network; MTA, Material Transfer Agreement.

given the array of ex situ and in situ conservation techniques such as
seed banking, cultivationin living collections, tissue culture, species
recovery and ecological restoration’. In the context of the Global
Strategy for Plant Conservation, living collections were seen as being
key to achieving Target 8 (now Target 4 of the Kunming-Montreal Global
Biodiversity Framework), which called for at least 75% of threatened
plantspeciesinexsitu collections (preferably in the country of origin)
and atleast20% available for recovery and restoration programmes. As
anthropogenic climate change promises to outpace the ability of many
plantspecies to migrate, one proposed solutionis assisted migration,
in which species would be intentionally transferred into locations
they might have reached were climate change occurring at a slower
pace’. Although controversial, arole has been proposed for aglobally
distributed network of living collections to chaperone the assisted
migration process, as well as monitoring negative consequences such
asinvasiveness and unwanted hybridization in migrated species®. In
the context of increased global movement and trade, living collec-
tions can also serve as a vital early warning system—for example, the
International Plant Sentinel Network® detects and shares information
about new and emerging pest and pathogen risks.

The delivery of strategic objectives in science and conservation
isin part dependent on the concept of the “metacollection”*: a coor-
dinated network of living collections that collaboratively steward and
provideaccessto the world’s plant diversity. Collaborationis essential,
asindividualinstitutions have varied but ultimately limited capacities
to cultivate plant diversity, constrained primarily by resources and

ecological niche: a point illustrated by recent analyses that indicate
that many living collections have reached peak capacity and diver-
sity*. In this context, a global metacollection has greater potential to
hold the necessary species and intra-specific genetic diversity. But a
metacollection also requires effective coordination across a globally
diffuse network of ex situ diversity, with seamless flow and exchange
of information, which is, in turn, contingent on robust and efficient
datamanagement.

Data are fundamental to high-performance
management of living collections

Managing hyper-diverse assemblages of plants under dense cultivation
and within constrained environments demands robust data manage-
ment—an operation usually visible only as a facade of labelled plants.
Effective information management systems and processes are essen-
tial to the performance of living collections. Every batch of plants,
termed anaccession, istracked and monitored from the moment they
are sourced to the time they leave the collection (Fig. 1). Throughout
this life cycle, actions around an accession are recorded, including
processes such as sourcing, accessioning, mapping, verification,
propagation, auditing, herbarium vouchering, seed banking, material
transfer, utilization and de-accessioning. Accessions often accumulate
additional valuable datathrough primary observations on phenomena
suchas phenology, hardiness, edaphic conditions and pest or disease
susceptibility, as well as secondary data acquisition such as consented
description of ethnobotanical uses, extinction risk and biogeographic
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distribution. The sheer volume of data generated through these pro-
cesses necessitates specialized databases and skilled personnel to
ensure the long-term integrity and utility of this information.

The value and utility of living collections are then defined by the
quality and quantity of their associated data, as well as their integrity
with the specimens, with the potential applications and outcomes
foranaccessionintricately tied to thisinformation in numerous ways
(Fig. 1). For example, the presence of complete and accurate legal
documentation, such asexport and import permits, is crucial for deter-
mining anaccession’s availability to external stakeholders. Even when
legally acquired, associated data may reveal restrictions that limit a
specimen’s use for scientific research or commercial development.
Provenance data, indicating whether an accession originated from
the wild or hasahistory of cultivation, influenceits conservation value
and potential for species reintroduction® 2, For wild-sourced mate-
rial, the propagation method—whether vegetative or reproductive,
controlled or uncontrolled—affects genetic stability and conservation
utility?”*. Inaccurate location data within a collection can delay or
hinder accessibility and utilization, whereas taxonomic errors, such as
misidentified species or the use of outdated synonyms, can discourage
or even prevent use entirely. Ultimately, poor-quality data canlead to
aninstitution underestimating the significance, value or utility of an
accession, potentially resulting in unjustified de-accessioning and
permanent loss from the collection.

In recent decades, advances have been made in the manage-
ment of data for living collections. Since the early 1990s, we have
witnessed the transition from analogue to digital systems, with the
emergence of sophisticated databases capable of managing vast quan-
tities of accession-level information®’. Widely adopted commercial
platforms such as BG-BASE?* and IrisBG* as well as institution and
community-specific platforms such as Living Collections Manage-
ment System® and Botalista® have enabled institutions to streamline
dataentry, improve data accuracy and integrate data across multiple
processes. The German Gardens4Science programme has developed a
platform based on wrapping technologies and data standards to allow
the curation of distributed collection data as well as standardized data
aggregation and data access pipelines based on established community
protocols®. Meanwhile, Botanic Gardens Conservation International
(BGCI) have created global repositories for living collections and their
collections datasuchas PlantSearch, GardenSearch and ThreatSearch.
International databases such Plants of the World Online*, World Flora
Online”, International Union for Conservation of Nature and other
red lists®®, and the Global Biodiversity Information Facility® are also
facilitating a culture of data sharing and collaboration, with individual
living collections beginning to connect to a global network of biodi-
versity information. Collectively, these advances have strengthened
the ability of living collections to support global biodiversity goals.
But nonetheless, critical deficiencies persist.

Addressing the challengesin the currentliving
collections data architecture

Before addressing specific challenges, it is worth reflecting on exam-
ples from other collection domains that demonstrate that large-scale,
coordinated infrastructure developmentis achievable and transforma-
tive. Initiatives such as iDigBio in the USA have successfully mobilized
hundreds of millions of preserved specimen records into a unified
digital resource*’, whereas DiSSCo in Europe are building distributed
infrastructurestointegrate diverse natural science collections withina
common data framework*. The Global Biodiversity Information Facility
has likewise shown the power of coordinated international infrastruc-
ture by aggregating more than three billion biodiversity records into
asingle open platform™, albeit with still limited data input from liv-
ing collections. These efforts show that, with sufficient coordination,
investment and standards, fragmented data systems can be networked
into powerful global resources that support science, conservation and

policy. Building on these precedents, the living collections community
has a clear opportunity to adopt similar strategies and adapt them to
the distinct requirements of accession-level living collections data. But
despite the importance of data for defining the identity and function
of these living collections, notable challenges remain in the current
information infrastructure, as discussed below.

Fragmented database ecosystem

Our datainfrastructure and processes exhibitimportant disparities at
avariety of different geographicscales. Alarge proportion of botanical
ex situ collections, possibly up to two thirds', remain non-digitized
or lack advanced digital database solutions. Even among collections
with digital databases, fragmentationis a persistentissue, withinstitu-
tions relying on in-house systems of varying complexity or a limited
number of competitive commercial platforms. These commercial solu-
tions, while sometimes innovative, are often financially prohibitive—
particularly forinstitutionsin the Global South—and offer no guarantee
of long-term stability owing to competition, market fluctuation and
shifts in provider dominance. An additional challenge is that most
platformsare not multi-lingual, in contrast to the linguistically diverse
communities of users, leading to regional and national use of different
systems. Collectively, these factors hamper the integration and opti-
mization of botanical data infrastructure on a global scale.

Limited adoption of data and process standards

The fragmented nature of living collections management is exacerbated
by the lack of universally accepted data and process standards. This
deficitis more noticeable when compared with other collection types,
suchasthe SPECTRUM collections standard for museums, Darwin Core
standards*, or the Minimum Information about a Digital Specimen
measures® currently being specified within the TDWG Biodiversity
Information Standards**. Although many living collections strive to
maintain high standards in management practices, substantial variabi-
lity persists, even among well-established collections. Initiatives such
asthelInternational Plant Exchange Network and BGCl’s International
Transfer Format have made progressinstandardizing certain processes,
butaunified framework for minimum data standards, consistent data
entry and standardized data formats remains elusive. Consistent data
standards and processes become particularly important when attempt-
ing to maintain the genetic integrity of threatened plant species. More
broadly, the limited use or application of digital datastandards hinders
data sharing, specimen exchange and the wider integration of living
collectionsinto global biodiversity initiatives, limiting their collective
impact and potential.

Lack of atransparent and open data culture

Botanic gardens often struggle with transparency regarding the con-
tents and provenance of their living collections, with its origins in a his-
torical culture of competitive collecting practices. More contemporary
concerns include unwanted attention or theft of specific accessions
and apprehension about sharing datafor accessions that have not yet
beensubjectto comprehensive curation and data checks. Paradoxically,
sustaining the flow of plant diversity relies on building trust—particu-
larly between collection holders and biodiversity-rich countries or
providers*. Open data are essential to fostering this trust, linked to
material that is accessible, legally compliant and securely managed
(thatis, FAIR*® (findable, accessible, interoperable and reusable) and
CARE" (collective benefit, authority to control, responsibility and
ethics) principles). Without such transparency, achieving the trust
necessary for meaningful global collaboration becomes less likely.

Poor integration with global data source and

cognate collections

Global data management for living collections largely functions as
a closed information system, with access to global datasets often
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Fig. 2| Data integration pathway for high-performanceliving collections
withina global data ecosystem. This diagram illustrates the transformative
flow of collections data as it progresses through layers of digital infrastructure
to generate enriched global insights. Starting with institution-level collections
data (green) managed via collections software (yellow), information feeds into
global datarepositories (orange) and ultimately produces global data insights
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(red). As data move through this pathway, they become progressively enriched,
analysed, curated and coordinated—enhancing their strategic value for research
and conservation. At the foundation of this system are six core data governance
principles—open, accessible, accurate, compliant, standard and secure—which
ensure dataintegrity, interoperability and ethical use throughout the global
network.

restricted, and with limited integration with institutional living col-
lections databases. This lack of connectivity hinders the seamless use
of global datasets within individual living collection data management
systems, and vice versa. Consequently, living collections are commonly
out of date with respect to International Union for Conservation of
Nature Red List datasets, preventing the timely identification of ex situ
cultivated species that are newly threatened or facing increased extinc-
tion risks. Likewise, limited integration with resources such as World
FloraOnlinerestricts the adoption of the latest taxonomic consensus
and biogeographic data in a uniform way across collections.
Although repositories such as BGCI's PlantSearch collate dataon
the contents of living collections, these data are not integrated with
individual collections with sufficient frequency, and consequently
botanic-garden-derived data in global repositories are patchy and
outof date. Additionally, thereis limited networking withincreasingly
comprehensive data infrastructure built around cognate collection
types (for example, the Global Genome Biodiversity Network*s (for
tissue and DNA banks) and GENESYS* (for food crop seed banks)).

Limited tools for strategic prioritization and visualization

Accumulated data from living collections have the potential to provide
profound insights into collection management but remain massively
underutilized. Longitudinal analyses that leverage historical collections
data present an opportunity to track the performance and trajectory
of metacollections over time?. Contextual data tools and analyses
can enable the evaluation of living collections within regional or
global contexts*®, helping assess the value of species in cultivation®®,

Rarity assessments can inform gap analyses, revealing the absence of
specific threatened and endemic species across collections, as well
as biogeographic and taxonomic gaps'. And crucially, effective niche
modelling, when integrated with gap analyses''®, can help prioritize the
strategic acquisition and distribution of at-risk species in the face of
climate change”. However, the general absence of effective and freely
accessible tools for data-driven prioritization of space and resources
remains a clear limitation in addressing the challenges posed by the
biodiversity extinction crisis.

Our vision for aglobally integrated data
ecosystem for living collections
Our vision begins with a reaffirmation of the extraordinary nature
of our globally distributed living collections and the pivotal role of
their data. These collections can be likened to a vast, slow-moving
river of germplasm—dynamic and constantly shifting, yet carefully
channelled and harnessed for various purposes. Managing this flow of
biodiversity is inherently challenging, but it generates an abundance
of data and information that are invaluable not only to the botanic
garden network but also to a wide range of stakeholders. These data,
uniquely produced by managed living collections, distinguish us from
other biodiverse landscapes and are key to our identity. Supported
by these data, we define our singular roles, our immense potential to
tackle societal challenges and our pathway to the integrated manage-
ment of plant diversity.

Attheheartofrealizing our vision lies cultural change, withadher-
ence to six fundamental principles governing living collections data

Nature Plants


http://www.nature.com/natureplants

Perspective

https://doi.org/10.1038/s41477-025-02192-6

(Fig. 2), aligned to the FAIR and CARE principles*®*. For our global
network to sustain the necessary technological advancements for a
unified datasystem, these principles must garner widespread accept-
ance. These six principles require collections data to be: open—our
dataareopenly searchable by stakeholders and peers; accessible—the
material linked to our data is accessible for use by the community
and stakeholders, including research, education and conservation
practitioners; accurate—our data are up-to-date with respect to the
material they describe, and accurate with respect to taxonomic con-
sensus and conservation status; compliant—our data are held to the
highestlegal standards and consistent with national and international
laws governing collections, data and their use; secure—our data are
securely preserved in perpetuity, with mitigation against current and
future risks; and standard—our data are structured and organized
toallow for fullintegration of data and processes between collections
across the global network. The cultural adoption of these principles
is key to providing the foundation and support for the vision of adata
infrastructure that will require considerable redesign and innovation.

Ourvisionistoestablishaglobally integrated system that enables
seamless management of the world’s ex situ plant diversity (Fig. 2).
At its core, this system would feature a standardized yet adaptable
database infrastructure—affordable, scalable to collections of all
sizes and flexible enough to support locally adapted workflows as
well as both public and commercial software. To ensure maximum
interoperability, itis essential that both standards and infrastructure
components build on existing developments and avoid parallel struc-
tures wherever possible. By prioritizing accessibility, particularly
for currently undigitized collections in the Global South, we aim
to ensure equitable participation in the global conservation effort.
Developed through collaborative design, funding and maintenance,
this architecture would foster widespread adoption of minimum data
standards and consistent formats, enabling effortless digital data
exchange across collections and integrated global portals. Auto-
mated and routine data transfers would allow individual collections
to share sourcing information, including precise provenance data,
while global repositories would provide up-to-date conservation
assessments and taxonomic consensus. Regular synchronization
between local and global databases would empower the community
to track the movement of plant diversity as species and accessions
areadded, shared or lost.

Advanced analytical tools—such as niche modelling and gap
analysis—would be freely accessible, supporting decision-making,
particularly in acquiring intraspecific genetic diversity and allowing
planned acquisitionin the face of climate change. Global data platforms
would facilitate material exchange between collections and external
users, enhancing the value of living collections for research and conser-
vation. These platforms would also track and visualize the movement
of genetic material,improving transparency and compliance. Sharing
protocols would strengthen horticultural efficiencies and support
insitu speciesreintroduction efforts. Strategic de-accessioning would
beguided by enriched dataand abroader conservation context. Train-
ing programmes would ensure that curators, horticulturalists and data
specialists have the skills to access and apply the data tools to support
the management of individual and networked collections. Together,
these efforts would create aresilient, data-driven system, generating
outputsthatare enriched, curated, analysed and coordinated, advanc-
ing the role of botanic gardens in safeguarding and stewarding plant
diversity worldwide.

Recent advances in data management and collaboration fuel
optimism that a globally integrated data ecosystem for living plant
collections is within reach. First, as mentioned, botanic gardens
have begun linking their databases and sharing information as never
before. Forexample, BGClI’s platforms provide a nascent datanetwork—
PlantSearch alone hosts more than 1.4 million records from more
than 1,100 collections, and ThreatSearch has compiled more than

300,000 plant conservation assessments. These shared resources,
together with a universal taxonomic backbone (for example, World
Flora Online), provide a solid foundation for further interoperability.
The concept of a distributed metacollection—as an integrated global
collection managed across many gardens—is gaining traction. Some
botanicgardens are pioneering the application of metacollection prac-
tices and processes developed in the zoo and aquarium communities
and applying them to botanical metacollections”. At the same time,
new collaborative networks are forming to use data in coordinated
action®. Notable national examples of concerted muti-institutional
action around ex situ conservation include the Wildpflanzenschutz
Deutschland project and the regional Hawaiian Rare Plant Program®*. At
aglobalscale, the recently established Global Conservation Consortia
link experts and gardens around the world to craft collective strategies
for at-risk plant groups, demonstrating the power of data-driven col-
laboration®. Shared taxon-specific ex situ programmes for conifers,
cycads, oaks, magnolias and ericas show that when institutions pool
data, expertise and resources, they can achieve outcomes that would
have beenimpossible in isolation?*>*°,

Conclusion

Here we have focused onthe living collections dataecosystem, because
many aspects to managing these collections are unique within the
broader collections sector. But we canlook to the more advanced and
better-networked accession-level data systems of ex situ agricultural
gene banks” (for example GENESYS*), not only for inspiration but
with a view to lessons learned, and ultimately as future partnersin
building an even broader integrated global system for ex situ conser-
vation resources. Parallel developments in other domains, such as
the ZooMu project, which is actively linking data between zoological
and museum collections®®, highlight both the feasibility and the value
of building bridges between different analogous collections such as
living collections and herbaria. Furthermore, the data dimensions
illustrated in Fig. 1 parallel those of the extended specimen concept, in
whichlinked data from diverse domains areintegrated around asingle
specimento create aricher digital object. The living collections com-
munity canboth contribute to and benefit from the globalmomentum
towards extended specimens, exemplified by emerging initiatives
such asiDigBio*’and DiSSCo". These programmes demonstrate how
federated infrastructures can unify heterogeneous data sources at
scale, providing a practical pathway for living collections to connect
more fully to the wider biodiversity data ecosystem.

Inconclusion, living collections have arich history of adaptation,
not only responding to evolving values and needs but also catalysing
innovations to address them. Intoday’s era of climate change and accel-
erating biodiversity loss, with the need for nature-based solutions, the
potential of living collections has never been greater. The momentum
isevident—fromliving collections networks to global databases, con-
verging towards a more collaborative, information-rich ecosystem that
will enable strategic, evidence-based stewardship of plant diversity on
aworldwide scale. Our challenge to our friends, colleagues and com-
munity is to come together, to complete this journey to transform our
thinking, data practices and informationinfrastructures. By doing so,
we will better position our data, collections and institutions to address
the grand challenges of the twenty-first century.
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