

BOTANIC GARDENS CONSERVATION INTERNATIONAL

International Plant Sentinel Network

Why do trees bleed?

Dr Charles Lane, Plant Health Consultant, Fera Science Ltd

Contents

Slide Title	Page
What is a 'bleed'?	3
Why do trees bleed?	4
Disease and decay	7
What are a tree's defences?	9
What triggers bleeds?	13
Phytophthora	13
Other causes	14
Wounds	21
Lookalikes	22
What is the prognosis?	23
Summary	24

What is a bleed?

There is no scientific definition of a tree 'bleed'

They frequently include a wide range of overlapping symptoms:

Why do trees bleed?

To understand why trees bleed, you first need to understand the structure of a tree:

- Bark dead tissue
- Sapwood living tissue
 - Phloem sugar transport
 - Xylem water transport
- Heartwood dead tissue

Trees bleed to protect the heartwood and sapwood against disease and decay

Why do trees bleed? Sapwood

Contains the vascular tissue (xylem and phloem)

- Important to maintain the functions of the tree
- Disease or decay of sapwood can hamper the functions of the tree
- Can lead to 'girdling' the tree, i.e. stopping the movement of sugars and water, which will eventually kill the tree

Why do trees bleed? Heartwood

There is no active chemical defence mechanism in hardwood. It is therefore vulnerable to specialised decay organisms that can digest:

- Cellulose e.g. soft rot fungi
- Cellulose and hemicellulose e.g. brown rot fungi
- Lignin, hemicellulose, cellulose e.g. white rot fungi
- Disease or decay in heartwood affects its structural integrity
- Trees can remain standing with 30-70% decay. However, this makes them very vulnerable to extreme weather

6

Disease & decay

Disease and decay are caused by <u>microorganisms</u> – the main groups are <u>bacteria and fungi</u>

- Microorganisms require oxygen for growth (aerobic conditions)
- Tree sapwood is saturate with fluid (creating anaerobic conditions) that are not suitable for microorganisms
- <u>However</u>, damage creates an aerobic region which is favourable for growth of microorganisms which cause decay

Disease & decay Process of discolouration and decay • Injured cells exposed to the air Injury allowing contact with microorganisms Pioneer Microorganisms such as bacteria and fungi alter the host cells e.g. moisture colonisation and pH Decay fungi • Creates ideal conditions for decay colonise Procession to decay is **NOT** causing fungi inevitable – wound healing, other organisms and unfavourable environment may Decay stop the process

BGCI

Bark provides a protective layer (much like skin) against:

- Physical damage
- Vertebrate pests
- Birds (e.g. woodpeckers)
- Pests (e.g. bark-boring)
- Diseases
- Decay

Second line = sealing off invaders

CODIT

Compartmentalisation **O**f **D**ecay (Disease) In Trees 'Trees don't heal they seal'

Shigo, 1969

Second line of defence = host response to a wound

Wall 1 the tree can 'plug' the sapwood above and below a wound (with antifungal substances, gums, resins etc.)

Wall 2 wood grown late in the season (latewood) produces a growth ring which prevents the wound from moving deeper into the tree

Wall 3 specialised cells (ray cells) keep it contained within a segment of the trees

Wall 4 new specialised woody growth (a barrier zone) coats the exterior of the wound protecting the tree

http://www.eastsidetreeworks.com/blog/ how-to-recognize-a-possible-hazard-tree-1-c-o-d-i-t/codit/

Phytophthora

Phytophthora are a large group of pathogens that cause diseases in plants

- They damage the sapwood
- This can girdle the stem, killing the tree

Phytophthora

- Common symptoms of Phytophthora:
- Water soaked lesions
- Tar spots
- 'Foxy red-brown' discoloration

Phytophthora

These bleeds can be seen anywhere on the tree:

• Roots, stem base and stem (up into canopy)

Other causes: *Armillaria* **species**

Known as 'honey fungus' is a parasitic fungi which exhibits the following signs:

- Toadstools (as opposite)
- White, vein-like threads know as mycelium which have a mushroom smell
- Black or brown root-like cords 'bootlaces' fungal rhizomorphs
- Water soaked lesions on the trunk base and where the roots meet the trunk

The fungus can girdle the base – hindering the transportation of water and nutrients

Other causes: bacterial pathogens e.g. acute oak decline

- Acute Oak Decline (AOD) is a disease mainly affecting native oak trees in Britain
- Affected trees have vertical, weeping fissures that seep black fluid
- Some trees die 4/6 years after onset of symptoms

Other causes: pests e.g. great spruce bark beetle

- The great spruce bark beetle (Dendroctonus micans)
- Found in forests throughout mainland Europe.
 - It lays its eggs under bark, damaging spruce trees by tunnelling into the bark
 - Developing young (larvae) feed on the inner woody layers
 - This weakens the tree
 - Trees are killed by being completely girdled, at one or more points along the stem (it can take many years, and be the

Other causes: slime flux due to bacterial wetwood

- Bacterial wetwood is when anaerobic bacteria colonise and degrade the heartwood
- Bacteria and yeast causes the process of fermentation
- This process produces liquid which causes pressure to build up within the sapwood
- This liquid will find any wounds, natural openings to relieve the pressure, or it will eventually burst

Other causes: slime flux due to bacterial wetwood

- The liquid that runs out leaves a 'slime flux'
- Watery, smelly, slimy, long, vertical streaks, associated with wounds
- When it dries out it gives a 'chalky' white margin
- Slime flux may inhibit wound healing leading to further decay and dieback
- The internal decay caused by bacterial wetwood within the heartwood can reduce the crown
- It will make the tree structurally unsound

What triggers bleeds? Wounds

Wounds can occur in many ways:

- Branch stubs from pruning or damage
- Branch tears (where the branch meets the trunk or other branches and has ripped)
 - Scars from previous physical damage or pests

This can...

- Make the tree prone to slime flux
- Provide an entry point for
 'secondary infection' by
 damaging organisms which
 could cause ill-health or its
 death

What triggers bleeds? Lookalike: water staining

- Water run off from branch unions or water pockets
- Commonly seen after rainy weather
- Not an indication of ill-health or damage

What is the prognosis?

Bad

- Pest or Disease may be present
- Resource allocation to healing can cost the tree
- A potential sign of dieback, decline and decay
- May indicate a wound which is vulnerable to secondary infection
- May indicate structural weakness

Good

- Shows that the tree is fighting back
- There is an expectation of recovery (trees do not heal, they seal)
- Sometimes actually an indicator of health
- Naturally occurring, and not always an indication of ill-health

24

Summary

- There are many causes of bleeds, ranging from the serious (*Phytophthora*) to the harmless (water staining)
- Before assuming the worst, rule out non pest and disease related causes first
- Monitor progression to determine risk and the need for intervention
 - consider targets & hazard (e.g. structurally unsound trees)
 - biosecurity risk (e.g. its potential to spread to other trees)
- Remember: bleeds are not always bad! Sometimes they are a good indication your tree is fighting back

Additional information

- CODIT <u>http://www.eastsidetreeworks.com/blog/how-to-recognize-a-possible-hazard-tree-1-c-o-d-i-t/codit/</u>
- Discolouration and decay, Alex L. Shigo & Edwin vH. Larson (1969) https://www.nrs.fs.fed.us/pubs/rp/rp_ne127.pdf
- Bleeding canker pf horse chestnut <u>https://www.forestry.gov.uk/fr/INFD-6KYBSS</u>
- Biology of Phytophthora <u>https://www.forestry.gov.uk/pdf/fcin30.pdf/\$FILE/fcin30.pdf</u>
- Honey fungus <u>https://www.rhs.org.uk/advice/profile?pid=180</u>
- Acute oak decline https://www.forestry.gov.uk/fr/acuteoakdecline
- Great spruce beetle <u>https://www.forestry.gov.uk/greatsprucebeetle</u>
- Bacterial wetwood & slime flux; this resource (like many others) states they are two terms for the same thing, but please note bacterial wetwood <u>causes</u> slime flux - <u>http://www.missouribotanicalgarden.org/gardens-gardening/your-</u> garden/help-for-the-home-gardener/advice-tips-resources/pests-andproblems/diseases/cankers/bacterial-wetwood.aspx