Botanic Gardens Conservation International The world's largest plant conservation network

Horticultura de Magnolias para la Conservación

Curso-taller en técnicas para horticultores de jardines botánicos y personal interesado de Ecuador

Jardín Botánico de Quito, Ecuador, 28–29 de noviembre de 2017

Por: Eduardo Calderón Sáenz (Reserva Natural "El Refugio", Dagua, Colombia)

Módulo 1: GENERALIDADES

Módulo 1: GENERALIDADES

Sobre el sistema radicular de las magnolias:

- Tienen raíces carnosas superficiales, delicadas y poco ramificadas, que se extienden bastante horizontalmente
- Carecen de pelos absorbentes (Ellis, 1998)
- La mayoría de las plantas usan los pelos absorbentes para absorber los minerales del suelo
- Las magnolias dependen de los hongos del suelo para este proceso
- Se dice que las magnolias, junto con otras angiospermas primitivas, tienen una "xerofobia ancestral" que les ha impedido colonizar ambientes secos (Feild *et al.* 2009)

Biología floral y polinización de Magnoliaceae (según Hooper & Hooper 2017)

- Las flores de esta familia se consideran muy primitivas, por estos rasgos:
 - -Tienen "tépalos", es decir unas hojas florales no completamente diferenciadas en sépalos y pétalos
 - -Los botones florales están protegidos externamente por brácteas (o hipsófilos), no por sépalos
 - Al ser un grupo muy antiguo, diversificado antes de la aparición de las abejas, se adaptaron inicialmente a la polinización por coleópteros, condición que persiste actualmente en la sección *Talauma*.
 - -Por eso, los carpelos son muy robustos (a veces también los tépalos son muy gruesos)
- Las flores son Monoicas ("una casa", es decir flores con ambos sexos)
- Dicógamas ("formación de gametos en dos etapas"): maduracón asincrónica de los sexos
- Protóginas ("primero la antesis femenina", después la antesis masculina).
- Algunas magnolias de zonas templadas se han adaptado secundariamente a la polinización por abejas.
- Generalmente son autocompatibles, pero tienden a favorecer la polinización cruzada, gracias a la dicogamia.
- Se dice que, excepcionalmente, algunas magnolias tienden a ser auto-incompatibles, pero aún en estos individuos se ha observado que algunas ramas (en individuos viejos) se vuelven auto-compatibles, gracias a mutaciones genéticas que se dan sólo en algunas ramas.....

Fases de madurez de las flores:

BGCI
Plants for the Planet

(según Richard Figlar, en cartas a ECS, 2017)

	Magnolia insignis	Magnolia changhungtana
	9 pm: Comienza antesis* femenina (se abren todos los tépalos)	3:30 pm: Se nota desplazamiento de tépalos en el botón floral
DIA 1:	<u>Unas horas más tarde</u> : Se cierran los tépalos internos	8:52 pm: Comienza antesis femenina (se abren todos los tépalos) Unas horas más tarde: Se cierran los tépalos internos
DIA 2:	En la mañana: Los tépalos internos permanecen cerrados 7 pm: Se abren de nuevo los tépalos internos y comienza antesis masculina	5:03 pm: Los tépalos internos permanecen cerrados 7:14 pm: Se abren los tépalos internos de nuevo, y comienza antesis masculina

^{*}Antesis = Período mientras la flor está completamente abierta y es funcional. Se habla de *antesis femenina* cuando la parte femenina está receptiva a la polinización, y de *antesis masculina* cuando la flor tiene polen expuesto fresco y viable

Tipos de fruto en Magnolia

Esquistosincarpo en Magnolia hernandezii

Un fruto compuesto por un agregado de folículos, c/u con dehiscencia longitudinal

Semillas alojadas en una placenta central, rodeadas por un ectocarpo leñoso continuo, con dehiscencia circuncísil (flechas)

Aspectos morfológicos, fisiológicos y ecológicos relevantes para la germinación de las semillas de Magnolias

- Sarcotesta generalmente roja, rica en aceites, atrae y alimenta aves (p.ej. tucanes)
- La sarcotesta es 'impermeable' y retarda la germinación mientras dure intacta
- La molleja de las aves ejerce una acción abrasiva sobre las semillas (en medio ácido), removiendo la sarcotesta y preparándolas para una germinación "natural"
- Algunas semillas de magnolias de la zona templada muestran un período de 'latencia' que sólo puede romperse con almacenamiento en frío-húmedo (especies zona templada) -- 40 a 60 días entre 2 y 4 °C
- Para las especies tropicales, todavía se discute si la refrigeración de las semillas sería recomendable
- De todas maneras, hay evidencia de que las semillas de magnolias tropicales presentan algún grado de latencia, y que hay ciertos tratamientos que ayudan a romper esta latencia, p.ej.:
 - --Refrigeración 1-2 semanas, en húmedo (musgo, aserrín, turba)
 - --Secado leve de las semillas (2-3 horas a la sombra) justo antes de la siembra
 - -- Tapar los semilleros con plástico negro (semillas previamente refrigeradas)
 - --Luz infrarroja?
- Tienen un endospermo que persiste aún en etapas avanzadas de la madurez de la semilla
- Además, tienen un tegumento interno ("bolsa de caucho"), que debe volverse como "gelatina" para liberar los cotiledones
- Semillas **recalcitrantes** (no convencionales), es decir, no soportan el almacenamiento prolongado bajo condiciones de baja humedad

Métodos de propagación

- Métodos sexuales (por semilla)
- Métodos asexuales (esquejes o estacas, acodos, injertos, micropropagación)

Ventajas de propagación por SEMILLAS:

- Permite la generación de nuevos híbridos de valor hortícola, de manera ya sea controlada o no controlada
- Se amplía la base genética (variabilidad genética inherente a la reproducción sexual)
- Es más económica que la propagación VEGETATIVA
- Plántulas más vigorosas, con sistema radicular más fuerte (plántulas aptas para patrones de injerto)

Desventajas de propagación por SEMILLAS:

• Las plantas se demoran más en florecer (aunque algunos híbridos de semilla también pueden florecer antes de 10 años)

Propagación asexual

"La mayoría de las magnolias se puede propagar por esquejes, siempre que se aplique una técnica adecuada" (Gardiner, 2000)

Ventajas de la propagación vegetativa:

- Se puede obtener una copia exacta (clon) de un parental deseado
- Generalmente se obtienen plantas que florecen más rápido

Desventajas de la propagación vegetativa:

- Es un método más costoso
- El transporte del material es más complicado, si se compara con semillas

Literatura (I)

ACKER, S. 2000. Digging in. Home Fashion. Special to The Washington Post, June 15, 2000; Pag. H11. http://www.washingtonpost.com/wp-adv/specialsales/homefashion/post91.html>

AGROBYTE. (consultado 19-nov-2017). 14. Cuidados culturales de los soutos. En: Manual de selvicultura del Castaño en Galicia.

http://www.agrobyte.com/publicaciones/castano/cap14_1.html

CORANTIOQUIA. 2011. Avances en la estrategia para la conservación de las especies de la familia Magnoliaceae en jurisdicción de CORANTIOQUIA. Boletín Técnico Biodiversidad, No. 6, Medellín, 100 pp.

http://www.corantioquia.gov.co/sitios/ExtranetCorantioquia/SiteAssets/Lists/Administrar%20Contenidos/EditForm/BoletinBiodiversidad6.pdf

CSIC. (consultado 19-nov 2017). Cítricos: Labores a realizar en el período enero – abril. Consejo Superior de Investigaciones Científicas. Unidad Asociada "Sistemas Agroforestales": Estación Fitopatolóxica do Areeiro - Misión Biológica de Galicia. http://www.efa-dip.org/es/Info_Agro/Citricos/Ene_Abr/3-Injertos.htm

ELLIS, B.W. 1998. Growing North America's favorite plants. Houghton Mifflin Company, N.Y.

Literatura (II)

FEILD, T.S., CHATELET, D.S. & BRODRIBB, T.J. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. **Geobiology** 7: 237-264. http://www.brodribblab.org.au/wp-content/uploads/2014/06/Xerophobia.pdf

GARDINER, J.M. 2000. Magnolias. A gardener's guide. Timber Press, Portland, Oregon. 329 pp.

GONZÁLEZ, R.T. & MONTOYA, G.E. 2014. Protocolos de germinación de 8 especies forestales nativas en el norte del Valle del Cauca. Comité de Cafeteros del Valle del Cauca – CVC – Proyecto Biodiversidad FNC-PNUD-GEF - Cali, 32 pp.

https://issuu.com/pnudcol/docs/protocolos.final.agosto1

GRANT, B.L. (consultado 13-nov-2017). What is air layering: Learn about air layering plants. https://www.gardeningknowhow.com/garden-how-to/propagation/layering/air-layering-plants.htm

HOOPER, V. & HOOPER, K. 2017. Magnolia ecology. Magnolia grove. Magnolia specialists. Waitara, Taranaki, Nueva Zelandia.

http://www.magnoliagrove.co.nz/index.php/magnolia-news/6-news-story-1

Literatura (III)

JOSÉ, A.C., LIGTERINK, W., DAVIDE, A.C., AMARAL DA SILVA, E.A. & WILHORST, H.W.M. 2008. Changes in gene expression during drying and imbibition of dessication sensitive *Magnolia ovata* (A. St.-Hil.) Spreng. seeds. **Revista Brasileira de Sementes** 31(1): 270-280. http://www.scielo.br/pdf/rbs/v31n1/a30v31n1.pdf>

LEBUDE, A.V. & BLAZICH, F.A. 2016. Propagation, Chapter 13, *In*: K.A. Moore, and. L.K. Bradley (eds). North Carolina Extension Gardener Handbook. NC State Extension, Raleigh, NC. http://content.ces.ncsu.edu/13-propagation>

RANNEY, T. & T. GILLOOLY. 2014. New insights into breeding and propagating Magnolias. https://www.ces.ncsu.edu/fletcher/mcilab/publications/ranney-and-gillooly-2014.pdf>

RUIZ-PENAGOS D., GARCÍA-SIERRA J.H. & OSPINA-MEDINA N.E. 2015. Siembra y cuidado en campo de árboles de la familia Magnoliaceae (molinillo, copachí, alma negra). Jardín Botánico Universidad Tecnológica de Pereira – BGCI. Pereira, Colombia, 12 pp.

TEKURA SCHOOL (consultado 22-dic-2017). Science Horticulture. HT1093. Plant propagation 3. Layering. New Zealand. http://horticulture.tekura.school.nz/plant-propagation-3/ht1093-plant-propagation-3-study-plan/layering/

VERDE Y TIERRA. (consultado 19-nov-2017). Blogspot.

http://verdeytierra.blogspot.com.co/2014/03/hablemos-de-injertos.html

Connecting People • Sharing Knowledge • Saving Plants

Our Mission is to mobilise botanic gardens and engage partners in securing plant diversity for the well-being of people and the planet